Package: nipals 0.9

nipals: Principal Components Analysis using NIPALS or Weighted EMPCA, with Gram-Schmidt Orthogonalization

Principal Components Analysis of a matrix using Non-linear Iterative Partial Least Squares or weighted Expectation Maximization PCA with Gram-Schmidt orthogonalization of the scores and loadings. Optimized for speed. See Andrecut (2009) <doi:10.1089/cmb.2008.0221>.

Authors:Kevin Wright [aut, cre, cph]

nipals_0.9.tar.gz
nipals_0.9.zip(r-4.5)nipals_0.9.zip(r-4.4)nipals_0.9.zip(r-4.3)
nipals_0.9.tgz(r-4.4-any)nipals_0.9.tgz(r-4.3-any)
nipals_0.9.tar.gz(r-4.5-noble)nipals_0.9.tar.gz(r-4.4-noble)
nipals_0.9.tgz(r-4.4-emscripten)nipals_0.9.tgz(r-4.3-emscripten)
nipals.pdf |nipals.html
nipals/json (API)
NEWS

# Install 'nipals' in R:
install.packages('nipals', repos = c('https://kwstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kwstat/nipals/issues

Datasets:
  • uscrime - U.S. Crime rates per 100,00 people

On CRAN:

7.08 score 7 stars 4 packages 36 scripts 654 downloads 3 exports 0 dependencies

Last updated 4 months agofrom:765bef02a7. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winNOTENov 13 2024
R-4.5-linuxNOTENov 13 2024
R-4.4-winNOTENov 13 2024
R-4.4-macNOTENov 13 2024
R-4.3-winNOTENov 13 2024
R-4.3-macNOTENov 13 2024

Exports:avg_angular_distanceempcanipals

Dependencies:

Comparing results and performance of NIPALS functions in R

Rendered fromnipals_comparisons.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2020-01-20
Started: 2017-10-30

EMPCA notes

Rendered fromempca_notes.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2024-01-26
Started: 2020-01-20

The NIPALS algorithm

Rendered fromnipals_algorithm.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2020-01-20
Started: 2017-10-31

NIPALS optimization notes

Rendered fromnipals_optimization.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2024-01-26
Started: 2017-10-31