Title: | Color Palettes, Colormaps, and Tools to Evaluate Them |
---|---|
Description: | A comprehensive collection of color palettes, colormaps, and tools to evaluate them. |
Authors: | Kevin Wright [aut, cre, cph] |
Maintainer: | Kevin Wright <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.9 |
Built: | 2024-12-12 04:42:24 UTC |
Source: | https://github.com/kwstat/pals |
Color palettes designed for bivariate choropleth maps.
arc.bluepink(n = 9) brewer.qualbin(n = 6) brewer.divbin(n = 6) brewer.divseq(n = 9) brewer.qualseq(n = 9) brewer.divdiv(n = 9) brewer.seqseq1(n = 9) brewer.seqseq2(n = 9) census.blueyellow(n = 9) tolochko.redblue(n = 9) stevens.pinkgreen(n = 9) stevens.bluered(n = 9) stevens.pinkblue(n = 9) stevens.greenblue(n = 9) stevens.purplegold(n = 9) vsup.viridis(n = 32) vsup.redblue(n = 32)
arc.bluepink(n = 9) brewer.qualbin(n = 6) brewer.divbin(n = 6) brewer.divseq(n = 9) brewer.qualseq(n = 9) brewer.divdiv(n = 9) brewer.seqseq1(n = 9) brewer.seqseq2(n = 9) census.blueyellow(n = 9) tolochko.redblue(n = 9) stevens.pinkgreen(n = 9) stevens.bluered(n = 9) stevens.pinkblue(n = 9) stevens.greenblue(n = 9) stevens.purplegold(n = 9) vsup.viridis(n = 32) vsup.redblue(n = 32)
n |
Number of colors to return. |
In many of these palette names, the color in the upper left corner is given first, and the color in the lower right corner is given second.
The 'brewer.*' palettes use 'bin' (binary), 'div' (diverging), 'qual' (qualitative), 'seq' (sequential) for the horizontal and vertical directions.
The 'arc.bluepink' palette uses white in the lower-left corner, which makes it difficult to see the difference between low values and missing data on maps.
The 'census.blueyellow' palette is slightly different, in that one direction uses lightness, and the other direction uses hue (yellow, green, blue).
The 'vsup.*' palettes are Value-Suppressing Uncertainty Palettes.
We strongly discourage using 'vsup.viridis', because the horizontal axis has changes in brightness, which are confounded with the changes in brightness in the vertical axis.
These palettes are all deliberately chosen to be discrete.
Bivariate color palettes can be difficult to use and interpret. Please be careful.
A vector of colors as hex strings.
Palette colors by various authors. R code by Kevin Wright.
Joshua Stevens. http://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map/
Cindy Brewer. http://www.personal.psu.edu/cab38/ColorSch/Schemes.html
Michael Correll AND Dominik Moritz AND Jeffrey Heer. (2018). Value-Suppressing Uncertainty Palettes. https://github.com/uwdata/papers-vsup
Robin Tolochko. http://tolomaps.tumblr.com/post/131671267233/creating-a-bivariate-choropleth-color-scheme
Aileen Buckley. https://www.slideshare.net/aileenbuckley/arc-gis-bivariate-mapping-tools-28903069
https://www.census.gov/population/www/cen2000/atlas/ Total Population, p. 4.
bivcol <- function(pal, nx=3, ny=3){ tit <- substitute(pal) if(is.function(pal)) pal <- pal() ncol <- length(pal) if(missing(nx)) nx <- sqrt(ncol) if(missing(ny)) ny <- nx image(matrix(1:ncol, nrow=ny), axes=FALSE, col=pal) mtext(tit) } op <- par(mfrow=c(4,4), mar=c(1,1,2,1)) bivcol(arc.bluepink) bivcol(brewer.divbin, nx=3) bivcol(brewer.divdiv) bivcol(brewer.divseq) bivcol(brewer.qualbin, nx=3) bivcol(brewer.qualseq) bivcol(brewer.seqseq1) bivcol(brewer.seqseq2) bivcol(census.blueyellow) bivcol(stevens.bluered) bivcol(stevens.greenblue) bivcol(stevens.pinkblue) bivcol(stevens.pinkgreen) bivcol(stevens.purplegold) bivcol(tolochko.redblue) bivcol(vsup.redblue, nx=8) par(op)
bivcol <- function(pal, nx=3, ny=3){ tit <- substitute(pal) if(is.function(pal)) pal <- pal() ncol <- length(pal) if(missing(nx)) nx <- sqrt(ncol) if(missing(ny)) ny <- nx image(matrix(1:ncol, nrow=ny), axes=FALSE, col=pal) mtext(tit) } op <- par(mfrow=c(4,4), mar=c(1,1,2,1)) bivcol(arc.bluepink) bivcol(brewer.divbin, nx=3) bivcol(brewer.divdiv) bivcol(brewer.divseq) bivcol(brewer.qualbin, nx=3) bivcol(brewer.qualseq) bivcol(brewer.seqseq1) bivcol(brewer.seqseq2) bivcol(census.blueyellow) bivcol(stevens.bluered) bivcol(stevens.greenblue) bivcol(stevens.pinkblue) bivcol(stevens.pinkgreen) bivcol(stevens.purplegold) bivcol(tolochko.redblue) bivcol(vsup.redblue, nx=8) par(op)
These functions provide a unified access to the ColorBrewer palettes.
brewer.blues(n) brewer.bugn(n) brewer.bupu(n) brewer.gnbu(n) brewer.greens(n) brewer.greys(n) brewer.oranges(n) brewer.orrd(n) brewer.pubu(n) brewer.pubugn(n) brewer.purd(n) brewer.purples(n) brewer.rdpu(n) brewer.reds(n) brewer.ylgn(n) brewer.ylgnbu(n) brewer.ylorbr(n) brewer.ylorrd(n) brewer.brbg(n) brewer.piyg(n) brewer.prgn(n) brewer.puor(n) brewer.rdbu(n) brewer.rdgy(n) brewer.rdylbu(n) brewer.rdylgn(n) brewer.spectral(n) brewer.accent(n) brewer.dark2(n) brewer.paired(n) brewer.pastel1(n) brewer.pastel2(n) brewer.set1(n) brewer.set2(n) brewer.set3(n)
brewer.blues(n) brewer.bugn(n) brewer.bupu(n) brewer.gnbu(n) brewer.greens(n) brewer.greys(n) brewer.oranges(n) brewer.orrd(n) brewer.pubu(n) brewer.pubugn(n) brewer.purd(n) brewer.purples(n) brewer.rdpu(n) brewer.reds(n) brewer.ylgn(n) brewer.ylgnbu(n) brewer.ylorbr(n) brewer.ylorrd(n) brewer.brbg(n) brewer.piyg(n) brewer.prgn(n) brewer.puor(n) brewer.rdbu(n) brewer.rdgy(n) brewer.rdylbu(n) brewer.rdylgn(n) brewer.spectral(n) brewer.accent(n) brewer.dark2(n) brewer.paired(n) brewer.pastel1(n) brewer.pastel2(n) brewer.set1(n) brewer.set2(n) brewer.set3(n)
n |
The number of colors to display for palette functions. |
The palette names begin with 'brewer' to make it easier to use auto-completion.
A vector of colors.
# Sequential pal.bands(brewer.blues, brewer.bugn, brewer.bupu, brewer.gnbu, brewer.greens, brewer.greys, brewer.oranges, brewer.orrd, brewer.pubu, brewer.pubugn, brewer.purd, brewer.purples, brewer.rdpu, brewer.reds, brewer.ylgn, brewer.ylgnbu, brewer.ylorbr, brewer.ylorrd) # Diverging pal.bands(brewer.brbg, brewer.piyg, brewer.prgn, brewer.puor, brewer.rdbu, brewer.rdgy, brewer.rdylbu, brewer.rdylgn, brewer.spectral) # Qualtitative pal.bands(brewer.accent(8), brewer.dark2(8), brewer.paired(12), brewer.pastel1(9), brewer.pastel2(8), brewer.set1(9), brewer.set2(8), brewer.set3(10), labels=c("brewer.accent", "brewer.dark2", "brewer.paired", "brewer.pastel1", "brewer.pastel2", "brewer.set1", "brewer.set2", "brewer.set3")) ## Not run: # Sequential pal.test(brewer.blues) pal.test(brewer.bugn) pal.test(brewer.bupu) pal.test(brewer.gnbu) pal.test(brewer.greens) pal.test(brewer.greys) pal.test(brewer.oranges) pal.test(brewer.orrd) pal.test(brewer.pubu) # good pal.test(brewer.pubugn) # good pal.test(brewer.purd) pal.test(brewer.purples) pal.test(brewer.rdpu) pal.test(brewer.reds) pal.test(brewer.ylgn) pal.test(brewer.ylgnbu) pal.test(brewer.ylorbr) pal.test(brewer.ylorrd) # Diverging, max n=11 colors pal.test(brewer.brbg) pal.test(brewer.piyg) pal.test(brewer.prgn) pal.test(brewer.puor) pal.test(brewer.rdbu) pal.test(brewer.rdgy) pal.test(brewer.rdylbu) pal.test(brewer.rdylgn) pal.test(brewer.spectral) # Qualtitative. These are weird...don't do this pal.test(brewer.accent) pal.test(brewer.dark2) pal.test(brewer.paired) pal.test(brewer.pastel1) pal.test(brewer.pastel2) pal.test(brewer.set1) pal.test(brewer.set2) pal.test(brewer.set3) # Need to move these to 'tests' pal.bands(brewer.accent(3), brewer.accent(4), brewer.accent(5), brewer.accent(6), brewer.accent(7), brewer.accent(8), brewer.accent(9), brewer.accent(10), brewer.accent(11), brewer.accent(12)) #brewer.purd(1) # Should err #brewer.purd(2) # Should err brewer.purd(3) brewer.purd(9) brewer.purd(25) pal.bands(brewer.purd(3), brewer.purd(4), brewer.purd(5), brewer.purd(6), brewer.purd(7), brewer.purd(8), brewer.purd(9), brewer.purd(10), brewer.purd(11), brewer.purd(12), brewer.purd(13), brewer.purd(14), brewer.purd(15), brewer.purd(100)) ## End(Not run)
# Sequential pal.bands(brewer.blues, brewer.bugn, brewer.bupu, brewer.gnbu, brewer.greens, brewer.greys, brewer.oranges, brewer.orrd, brewer.pubu, brewer.pubugn, brewer.purd, brewer.purples, brewer.rdpu, brewer.reds, brewer.ylgn, brewer.ylgnbu, brewer.ylorbr, brewer.ylorrd) # Diverging pal.bands(brewer.brbg, brewer.piyg, brewer.prgn, brewer.puor, brewer.rdbu, brewer.rdgy, brewer.rdylbu, brewer.rdylgn, brewer.spectral) # Qualtitative pal.bands(brewer.accent(8), brewer.dark2(8), brewer.paired(12), brewer.pastel1(9), brewer.pastel2(8), brewer.set1(9), brewer.set2(8), brewer.set3(10), labels=c("brewer.accent", "brewer.dark2", "brewer.paired", "brewer.pastel1", "brewer.pastel2", "brewer.set1", "brewer.set2", "brewer.set3")) ## Not run: # Sequential pal.test(brewer.blues) pal.test(brewer.bugn) pal.test(brewer.bupu) pal.test(brewer.gnbu) pal.test(brewer.greens) pal.test(brewer.greys) pal.test(brewer.oranges) pal.test(brewer.orrd) pal.test(brewer.pubu) # good pal.test(brewer.pubugn) # good pal.test(brewer.purd) pal.test(brewer.purples) pal.test(brewer.rdpu) pal.test(brewer.reds) pal.test(brewer.ylgn) pal.test(brewer.ylgnbu) pal.test(brewer.ylorbr) pal.test(brewer.ylorrd) # Diverging, max n=11 colors pal.test(brewer.brbg) pal.test(brewer.piyg) pal.test(brewer.prgn) pal.test(brewer.puor) pal.test(brewer.rdbu) pal.test(brewer.rdgy) pal.test(brewer.rdylbu) pal.test(brewer.rdylgn) pal.test(brewer.spectral) # Qualtitative. These are weird...don't do this pal.test(brewer.accent) pal.test(brewer.dark2) pal.test(brewer.paired) pal.test(brewer.pastel1) pal.test(brewer.pastel2) pal.test(brewer.set1) pal.test(brewer.set2) pal.test(brewer.set3) # Need to move these to 'tests' pal.bands(brewer.accent(3), brewer.accent(4), brewer.accent(5), brewer.accent(6), brewer.accent(7), brewer.accent(8), brewer.accent(9), brewer.accent(10), brewer.accent(11), brewer.accent(12)) #brewer.purd(1) # Should err #brewer.purd(2) # Should err brewer.purd(3) brewer.purd(9) brewer.purd(25) pal.bands(brewer.purd(3), brewer.purd(4), brewer.purd(5), brewer.purd(6), brewer.purd(7), brewer.purd(8), brewer.purd(9), brewer.purd(10), brewer.purd(11), brewer.purd(12), brewer.purd(13), brewer.purd(14), brewer.purd(15), brewer.purd(100)) ## End(Not run)
Colormaps designed for continuous data.
cubehelix(n = 25, start = 0.5, r = -1.5, hue = 1, gamma = 1) gnuplot(n = 25, trim = 0.1) tol.rainbow(n = 25, manual = TRUE) jet(n = 25) parula(n = 25) turbo(n = 25) coolwarm(n = 25) warmcool(n = 25) cividis(n = 25)
cubehelix(n = 25, start = 0.5, r = -1.5, hue = 1, gamma = 1) gnuplot(n = 25, trim = 0.1) tol.rainbow(n = 25, manual = TRUE) jet(n = 25) parula(n = 25) turbo(n = 25) coolwarm(n = 25) warmcool(n = 25) cividis(n = 25)
n |
Number of colors to return. |
start |
Start angle (radians) of the helix |
r |
Number of rotations of the helix |
hue |
Saturation of the colors, 0 = grayscale, 1 = fully saturated |
gamma |
gamma < 1 emphasizes low intensity values, gamma > 1 emphasizes high intensity values |
trim |
Proportion of tail colors to trim, default 0.1 |
manual |
If TRUE, return manually-calibrated colors. |
The coolwarm
and 'warmcool' palette by Moreland (2009) is colorblind safe.
The transition to and from gray is smooth, to reduce Mach banding.
The cubehelix
palette is sometimes used in astronomy.
Images using this palette will look monotonically increasing to both the
human eye and when printed in black and white.
This palette is named 'cubehelix' because the r,g,b values produced can be
visualised as a squashed helix around the diagonal from black (0,0,0) to
white (1,1,1) in the r,g,b color cube.
The gnuplot
palette uses black-blue-pink-yellow colors.
This palette looks good when printed in black and white.
Identical to the sp::bpy.colors palette.
The jet
palette should not be used and is only provided for historical interest.
The code for this palette comes from the example section of colorRampPalette
.
The 'jet' palette gained popularity as the default colormap in older versions of Matlab.
Because of the unevenness of the gradient, jet will exaggerate some features
of the data and minimize other features.
The parula
palette here is similar to the default Matlab palette.
Specific colors were adapted from the BIDS/colormap package.
The tol.rainbow
palette by Tol (2012) is a dark rainbow palette from
purple to red which works much better than standard rainbow palettes
for colorblind people.
If 1 <= n <= 13, manually-chosen equidistant rainbow colors are
used, where distances are defined by the CIEDE2000 color difference.
If 14 <= n <= 21, manually-chosen triplets of colours are used.
If n > 21 or if manual=FALSE, the palette computes the colors
according to Equation 3 of Tol (2012).
The cividis
palette by Jamie R. Nuñez, Christopher R. Anderton, Ryan S. Renslow,
is a variation of viridis that is less colorful.
The turbo
palette by Mikhailov, is similar to jet
, but avoids the
artificial color banding that plagues jet
. See also tol.rainbow
.
A vector of colors.
Palette colors by various authors. R code by Kevin Wright.
Dave A. Green. (2011). A colour scheme for the display of astronomical intensity images. Bull. Astr. Soc. India, 39, 289-295. http://arxiv.org/abs/1108.5083 http://www.mrao.cam.ac.uk/~dag/CUBEHELIX/
Kenneth Moreland. (2009). Diverging Color Maps for Scientific Visualization. Proceedings of the 5th International Symposium on Visual Computing. http://www.kennethmoreland.com/color-maps/ http://dx.doi.org/10.1007/978-3-642-10520-3_9
Paul Tol (2012). Color Schemes. SRON technical note, SRON/EPS/TN/09-002. https://personal.sron.nl/~pault/
My Favorite Colormap. (gnuplot) https://web.archive.org/web/20040119000943/http://www.ihe.uni-karlsruhe.de/mitarbeiter/vonhagen/palette.en.html
MathWorks documentation. http://www.mathworks.com/help/matlab/ref/colormap.html
BIDS/colormap. https://github.com/BIDS/colormap/blob/master/parula.py
Jamie R. Nuñez, Christopher R. Anderton, Ryan S. Renslow (2017). An optimized colormap for the scientific community. https://arxiv.org/abs/1712.01662
Anton Mikhailov, Turbo, An Improved Rainbow Colormap for Visualization (2019). https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
pal.bands(coolwarm, cubehelix, gnuplot, parula, cividis, jet, turbo, tol.rainbow) if(FALSE){ # ----- coolwarm ----- pal.test(coolwarm) # Minimal mach banding # Note the mach banding gray line in the following: # pal.volcano(colorRampPalette(c("#3B4CC0", "lightgray", "#B40426"))) # ----- cubehelix ----- # Full range of colors. Pink is overwhelming. Not the best choice. pal.test(cubehelix) # Mostly blues/greens. Dark areas severely too black. # Similar, but more saturated. See: http://inversed.ru/Blog_2.htm pal.volcano(function(n) cubehelix(n, start=.25, r=-.67, hue=1.5)) # Dark colors totally lose structure of the volcano peak. op <- par(mfrow=c(2,2), mar=c(2,2,2,2)) image(volcano, col = cubehelix(51), asp = 1, axes=0, main="cubehelix") image(volcano, col = cubehelix(51, start=.25, r=-.67, hue=1.5), asp = 1, axes=0, main="cubehelix") image(volcano, col = rev(cubehelix(51)), asp = 1, axes=0, main="cubehelix") image(volcano, col = rev(cubehelix(51, start=.25, r=-.67, hue=1.5)), asp = 1, axes=0, main="cubehelix") par(op) # ----- gnuplot ----- pal.test(gnuplot) # ----- jet ----- # pal.volcano(jet) pal.test(jet) # ----- parula ----- # pal.volcano(parula) pal.test(parula) # ----- tol.rainbow ----- # pal.volcano(tol.rainbow) pal.test(tol.rainbow) } # ----- cividis ----- # pal.volcano(cividis) pal.test(cividis)
pal.bands(coolwarm, cubehelix, gnuplot, parula, cividis, jet, turbo, tol.rainbow) if(FALSE){ # ----- coolwarm ----- pal.test(coolwarm) # Minimal mach banding # Note the mach banding gray line in the following: # pal.volcano(colorRampPalette(c("#3B4CC0", "lightgray", "#B40426"))) # ----- cubehelix ----- # Full range of colors. Pink is overwhelming. Not the best choice. pal.test(cubehelix) # Mostly blues/greens. Dark areas severely too black. # Similar, but more saturated. See: http://inversed.ru/Blog_2.htm pal.volcano(function(n) cubehelix(n, start=.25, r=-.67, hue=1.5)) # Dark colors totally lose structure of the volcano peak. op <- par(mfrow=c(2,2), mar=c(2,2,2,2)) image(volcano, col = cubehelix(51), asp = 1, axes=0, main="cubehelix") image(volcano, col = cubehelix(51, start=.25, r=-.67, hue=1.5), asp = 1, axes=0, main="cubehelix") image(volcano, col = rev(cubehelix(51)), asp = 1, axes=0, main="cubehelix") image(volcano, col = rev(cubehelix(51, start=.25, r=-.67, hue=1.5)), asp = 1, axes=0, main="cubehelix") par(op) # ----- gnuplot ----- pal.test(gnuplot) # ----- jet ----- # pal.volcano(jet) pal.test(jet) # ----- parula ----- # pal.volcano(parula) pal.test(parula) # ----- tol.rainbow ----- # pal.volcano(tol.rainbow) pal.test(tol.rainbow) } # ----- cividis ----- # pal.volcano(cividis) pal.test(cividis)
Color palettes designed for discrete, categorical data with a small number of categories.
alphabet(n = 26) alphabet2(n = 26) cols25(n = 25) glasbey(n = 32) kelly(n = 22) polychrome(n = 36) stepped(n = 24) stepped2(n = 20) stepped3(n = 20) okabe(n = 8) tableau20(n = 20) tol(n = 12) tol.groundcover(n = 14) trubetskoy(n = 22) watlington(n = 16)
alphabet(n = 26) alphabet2(n = 26) cols25(n = 25) glasbey(n = 32) kelly(n = 22) polychrome(n = 36) stepped(n = 24) stepped2(n = 20) stepped3(n = 20) okabe(n = 8) tableau20(n = 20) tol(n = 12) tol.groundcover(n = 14) trubetskoy(n = 22) watlington(n = 16)
n |
Number of colors to return. |
The alphabet
palette has 26 distinguishable colors that have logical names
starting with the English alphabet letters A, B, ... Z.
This palette is based on the work by Green-Armytage (2010), but uses the
names 'orange' instead of 'orpiment', and 'magenta' instead of 'mallow'.
The alphabet2
palette uses a similar idea with slightly different colors
and slightly different names. This palette comes from the Polychrome package,
generated with the createPalette
function and then manually
arranged and named.
The cols25
palette was created experimentally by Wright (unpublished)
to create a set of colors that are distinct.
The glasbey
palette by Glasbey et al (2007) has 32 colors that are
maximally distinct. Glasbey has 'white' as the second color, but in this
version of the palette, the color 'white' is moved to the end, and is
actually light-gray, #F2F3F4.
The kelly
palette of 22 colors maximize the contrast
between colors in a set if the colors are chosen in sequential order.
Kelly paid attention to the needs of people with color blindness. The
first nine colors work well for such people and people with normal vision.
Kelly did not provide RGB color values, and the paper was in black-and-white.
A color image of the Kelly palette can be found in Green-Armytage (2010).
The color 'white' has been re-defined as light-gray, #F2F3F4.
Commentary: We think the kelly palette has an over-abundance of orange-ish
colors, the purples are not very distinct, color 22 (olive green) is almost
identical to color 2 (black), etc. Trubetskoy says "towards the bottom of
Kelly's list things get complicated. The orange yellow, purplish red,
yellowish brown and reddish orange all seemed to blend together".
The okabe
palette was design to be (1) clear for both colorblind and
non-colorblind people, (2) vividly colored, and (3) good for screen and printed.
The color-blind simulation tools in R suggest this palette is not as useful
as hoped.
The polychrome
palette is also from the Polychrome package.
Colors were given a name from the ISCC-NBS standard.
The stepped
palette has 24 colors (5 hues, 4 levels within each hue, plus
4 shades of gray) that is useful for showing varying levels within categories.
Inspired by (http://geog.uoregon.edu/datagraphics/color_scales.htm), but in
order to better separate these colors in RGB space, red hue 0 was moved to hue 350,
green hue 80 moved to hue 90. The number of colors within each hue was reduced
from 5 to 4, and gray shades were added.
stepped2
and stepped3
are from the 'vega' package
https://github.com/vega/vega/wiki/Scales.
The tableau20
palette has 10 pairs of dark/light colors that are used by
the Tableau software.
The trubetskoy
palette as 20 colors, plus black and white.
The colors are designed to be easily distinguishable, tastefully luminant,
intuitively named, supplied with RGB colors.
https://sashamaps.net/docs/resources/20-colors/
The tol
palette has 12 colors by Paul Tol.
The watlington
palette has 16 colors.
The color 'white' has been re-defined as light-gray, #F2F3F4.
A vector of colors as hex strings.
Palette colors by various authors. R code by Kevin Wright.
Robert M. Boynton. (1989) Eleven Colors That Are Almost Never Confused. Proc. SPIE 1077, Human Vision, Visual Processing, and Digital Display, 322-332. http://doi.org/10.1117/12.952730
Kevin R. Coombes (2016). Polychrome. https://rdrr.io/rforge/Polychrome/man/alphabet.html
Chris Glasbey, Gerie van der Heijden, Vivian F. K. Toh, Alision Gray (2007). Colour Displays for Categorical Images. Color Research and Application, 32, 304-309. http://doi.org/10.1002/col.20327
P. Green-Armytage (2010): A Colour Alphabet and the Limits of Colour Coding. Colour: Design & Creativity (5) (2010): 10, 1-23. www.aic-color.org/journal/v5/jaic_v5_06.pdf
K. Kelly (1965): Twenty-two colors of maximum contrast. Color Eng., 3(6), 1965. http://www.iscc.org/pdf/PC54_1724_001.pdf
Masataka Okabe and Kei Ito (2002). Color Universal Design (CUD) - How to make figures and presentations that are friendly to Colorblind people. http://jfly.iam.u-tokyo.ac.jp/color/
Paul Tol (2012). Color Schemes. SRON technical note, SRON/EPS/TN/09-002. https://personal.sron.nl/~pault/
Sasha Trubetskoy (2017). List of 20 Simple, Distinct Colors. https://sashamaps.net/docs/resources/20-colors/
John Watlington. An Optimum 16 Color Palette. http://alumni.media.mit.edu/~wad/color/palette.html
Color Schemes Appropriate for Scientific Data Graphics http://geog.uoregon.edu/datagraphics/color_scales.htm
pal.bands(alphabet, alphabet2, cols25, glasbey, kelly, okabe, polychrome, tableau20, tol, watlington) pal.bands(stepped, stepped2, stepped3) pal.bands(tol.groundcover) ## Not run: alphabet() alphabet()["jade"] pal.bands(alphabet,n=26) pal.heatmap(alphabet) # pal.cube(alphabet) pal.heatmap(alphabet2) pal.heatmap(cols25) pal.heatmap(glasbey()) # pal.cube(glasbey, n=32) # Blues are close together pal.heatmap(kelly()) # too many orange/pink colors pal.safe(okabe()) # not great pal.heatmap(polychrome) pal.heatmap(stepped, n=24) pal.heatmap(stepped2, n=20) pal.heatmap(stepped3, n=20) pal.heatmap(tol, 12) pal.heatmap(watlington(16)) ## End(Not run)
pal.bands(alphabet, alphabet2, cols25, glasbey, kelly, okabe, polychrome, tableau20, tol, watlington) pal.bands(stepped, stepped2, stepped3) pal.bands(tol.groundcover) ## Not run: alphabet() alphabet()["jade"] pal.bands(alphabet,n=26) pal.heatmap(alphabet) # pal.cube(alphabet) pal.heatmap(alphabet2) pal.heatmap(cols25) pal.heatmap(glasbey()) # pal.cube(glasbey, n=32) # Blues are close together pal.heatmap(kelly()) # too many orange/pink colors pal.safe(okabe()) # not great pal.heatmap(polychrome) pal.heatmap(stepped, n=24) pal.heatmap(stepped2, n=20) pal.heatmap(stepped3, n=20) pal.heatmap(tol, 12) pal.heatmap(watlington(16)) ## End(Not run)
Peter Kovesi's perceptually uniform colormaps
kovesi.cyclic_grey_15_85_c0(n) kovesi.cyclic_grey_15_85_c0_s25(n) kovesi.cyclic_mrybm_35_75_c68(n) kovesi.cyclic_mrybm_35_75_c68_s25(n) kovesi.cyclic_mygbm_30_95_c78(n) kovesi.cyclic_mygbm_30_95_c78_s25(n) kovesi.cyclic_wrwbw_40_90_c42(n) kovesi.cyclic_wrwbw_40_90_c42_s25(n) kovesi.diverging_isoluminant_cjm_75_c23(n) kovesi.diverging_isoluminant_cjm_75_c24(n) kovesi.diverging_isoluminant_cjo_70_c25(n) kovesi.diverging_linear_bjr_30_55_c53(n) kovesi.diverging_linear_bjy_30_90_c45(n) kovesi.diverging_rainbow_bgymr_45_85_c67(n) kovesi.diverging_bkr_55_10_c35(n) kovesi.diverging_bky_60_10_c30(n) kovesi.diverging_bwr_40_95_c42(n) kovesi.diverging_bwr_55_98_c37(n) kovesi.diverging_cwm_80_100_c22(n) kovesi.diverging_gkr_60_10_c40(n) kovesi.diverging_gwr_55_95_c38(n) kovesi.diverging_gwv_55_95_c39(n) kovesi.isoluminant_cgo_70_c39(n) kovesi.isoluminant_cgo_80_c38(n) kovesi.isoluminant_cm_70_c39(n) kovesi.linear_bgy_10_95_c74(n) kovesi.linear_bgyw_15_100_c67(n) kovesi.linear_bgyw_15_100_c68(n) kovesi.linear_blue_5_95_c73(n) kovesi.linear_blue_95_50_c20(n) kovesi.linear_bmw_5_95_c86(n) kovesi.linear_bmw_5_95_c89(n) kovesi.linear_bmy_10_95_c71(n) kovesi.linear_bmy_10_95_c78(n) kovesi.linear_gow_60_85_c27(n) kovesi.linear_gow_65_90_c35(n) kovesi.linear_green_5_95_c69(n) kovesi.linear_grey_0_100_c0(n) kovesi.linear_grey_10_95_c0(n) kovesi.linear_kry_5_95_c72(n) kovesi.linear_kry_5_98_c75(n) kovesi.linear_kryw_5_100_c64(n) kovesi.linear_kryw_5_100_c67(n) kovesi.linear_ternary_blue_0_44_c57(n) kovesi.linear_ternary_green_0_46_c42(n) kovesi.linear_ternary_red_0_50_c52(n) kovesi.rainbow_bgyr_35_85_c72(n) kovesi.rainbow(n) kovesi.rainbow_bgyr_35_85_c73(n) kovesi.rainbow_bgyrm_35_85_c69(n) kovesi.rainbow_bgyrm_35_85_c71(n)
kovesi.cyclic_grey_15_85_c0(n) kovesi.cyclic_grey_15_85_c0_s25(n) kovesi.cyclic_mrybm_35_75_c68(n) kovesi.cyclic_mrybm_35_75_c68_s25(n) kovesi.cyclic_mygbm_30_95_c78(n) kovesi.cyclic_mygbm_30_95_c78_s25(n) kovesi.cyclic_wrwbw_40_90_c42(n) kovesi.cyclic_wrwbw_40_90_c42_s25(n) kovesi.diverging_isoluminant_cjm_75_c23(n) kovesi.diverging_isoluminant_cjm_75_c24(n) kovesi.diverging_isoluminant_cjo_70_c25(n) kovesi.diverging_linear_bjr_30_55_c53(n) kovesi.diverging_linear_bjy_30_90_c45(n) kovesi.diverging_rainbow_bgymr_45_85_c67(n) kovesi.diverging_bkr_55_10_c35(n) kovesi.diverging_bky_60_10_c30(n) kovesi.diverging_bwr_40_95_c42(n) kovesi.diverging_bwr_55_98_c37(n) kovesi.diverging_cwm_80_100_c22(n) kovesi.diverging_gkr_60_10_c40(n) kovesi.diverging_gwr_55_95_c38(n) kovesi.diverging_gwv_55_95_c39(n) kovesi.isoluminant_cgo_70_c39(n) kovesi.isoluminant_cgo_80_c38(n) kovesi.isoluminant_cm_70_c39(n) kovesi.linear_bgy_10_95_c74(n) kovesi.linear_bgyw_15_100_c67(n) kovesi.linear_bgyw_15_100_c68(n) kovesi.linear_blue_5_95_c73(n) kovesi.linear_blue_95_50_c20(n) kovesi.linear_bmw_5_95_c86(n) kovesi.linear_bmw_5_95_c89(n) kovesi.linear_bmy_10_95_c71(n) kovesi.linear_bmy_10_95_c78(n) kovesi.linear_gow_60_85_c27(n) kovesi.linear_gow_65_90_c35(n) kovesi.linear_green_5_95_c69(n) kovesi.linear_grey_0_100_c0(n) kovesi.linear_grey_10_95_c0(n) kovesi.linear_kry_5_95_c72(n) kovesi.linear_kry_5_98_c75(n) kovesi.linear_kryw_5_100_c64(n) kovesi.linear_kryw_5_100_c67(n) kovesi.linear_ternary_blue_0_44_c57(n) kovesi.linear_ternary_green_0_46_c42(n) kovesi.linear_ternary_red_0_50_c52(n) kovesi.rainbow_bgyr_35_85_c72(n) kovesi.rainbow(n) kovesi.rainbow_bgyr_35_85_c73(n) kovesi.rainbow_bgyrm_35_85_c69(n) kovesi.rainbow_bgyrm_35_85_c71(n)
n |
The number of colors to display for palette functions. |
All colormaps are named using Peter Kovesi's naming scheme: <category>_<huesequence>_<lightnessrange>_c<meanchroma>_s<colorshift>
Note: kovesi.rainbow
is another name for rainbow_bgyr_35_85_c72
.
A vector of colors.
Colormaps by Peter Kovesi. R code by Kevin Wright.
Peter Kovesi (2016). CET Perceptually Uniform Colour Maps. http://peterkovesi.com/projects/colourmaps/
Peter Kovesi (2015). Good Colour Maps: How to Design Them. Arxiv. https://arxiv.org/abs/1509.03700
https://bokeh.github.io/colorcet/
if(FALSE){ pal.bands(kovesi.cyclic_grey_15_85_c0, kovesi.cyclic_grey_15_85_c0_s25, kovesi.cyclic_mrybm_35_75_c68, kovesi.cyclic_mrybm_35_75_c68_s25, kovesi.cyclic_mygbm_30_95_c78, kovesi.cyclic_mygbm_30_95_c78_s25, kovesi.cyclic_wrwbw_40_90_c42, kovesi.cyclic_wrwbw_40_90_c42_s25, kovesi.diverging_isoluminant_cjm_75_c23, kovesi.diverging_isoluminant_cjm_75_c24, kovesi.diverging_isoluminant_cjo_70_c25, kovesi.diverging_linear_bjr_30_55_c53, kovesi.diverging_linear_bjy_30_90_c45, kovesi.diverging_rainbow_bgymr_45_85_c67, kovesi.diverging_bkr_55_10_c35, kovesi.diverging_bky_60_10_c30, kovesi.diverging_bwr_40_95_c42, kovesi.diverging_bwr_55_98_c37, kovesi.diverging_cwm_80_100_c22, kovesi.diverging_gkr_60_10_c40, kovesi.diverging_gwr_55_95_c38, kovesi.diverging_gwv_55_95_c39, kovesi.isoluminant_cgo_70_c39, kovesi.isoluminant_cgo_80_c38, kovesi.isoluminant_cm_70_c39, kovesi.linear_bgy_10_95_c74, kovesi.linear_bgyw_15_100_c67, kovesi.linear_bgyw_15_100_c68, kovesi.linear_blue_5_95_c73, kovesi.linear_blue_95_50_c20, kovesi.linear_bmw_5_95_c86, kovesi.linear_bmw_5_95_c89, kovesi.linear_bmy_10_95_c71, kovesi.linear_bmy_10_95_c78, kovesi.linear_gow_60_85_c27, kovesi.linear_gow_65_90_c35, kovesi.linear_green_5_95_c69, kovesi.linear_grey_0_100_c0, kovesi.linear_grey_10_95_c0, kovesi.linear_kry_5_95_c72, kovesi.linear_kry_5_98_c75, kovesi.linear_kryw_5_100_c64, kovesi.linear_kryw_5_100_c67, kovesi.linear_ternary_blue_0_44_c57, kovesi.linear_ternary_green_0_46_c42, kovesi.linear_ternary_red_0_50_c52, kovesi.rainbow_bgyr_35_85_c72, kovesi.rainbow_bgyr_35_85_c73, kovesi.rainbow_bgyrm_35_85_c69, kovesi.rainbow_bgyrm_35_85_c71) }
if(FALSE){ pal.bands(kovesi.cyclic_grey_15_85_c0, kovesi.cyclic_grey_15_85_c0_s25, kovesi.cyclic_mrybm_35_75_c68, kovesi.cyclic_mrybm_35_75_c68_s25, kovesi.cyclic_mygbm_30_95_c78, kovesi.cyclic_mygbm_30_95_c78_s25, kovesi.cyclic_wrwbw_40_90_c42, kovesi.cyclic_wrwbw_40_90_c42_s25, kovesi.diverging_isoluminant_cjm_75_c23, kovesi.diverging_isoluminant_cjm_75_c24, kovesi.diverging_isoluminant_cjo_70_c25, kovesi.diverging_linear_bjr_30_55_c53, kovesi.diverging_linear_bjy_30_90_c45, kovesi.diverging_rainbow_bgymr_45_85_c67, kovesi.diverging_bkr_55_10_c35, kovesi.diverging_bky_60_10_c30, kovesi.diverging_bwr_40_95_c42, kovesi.diverging_bwr_55_98_c37, kovesi.diverging_cwm_80_100_c22, kovesi.diverging_gkr_60_10_c40, kovesi.diverging_gwr_55_95_c38, kovesi.diverging_gwv_55_95_c39, kovesi.isoluminant_cgo_70_c39, kovesi.isoluminant_cgo_80_c38, kovesi.isoluminant_cm_70_c39, kovesi.linear_bgy_10_95_c74, kovesi.linear_bgyw_15_100_c67, kovesi.linear_bgyw_15_100_c68, kovesi.linear_blue_5_95_c73, kovesi.linear_blue_95_50_c20, kovesi.linear_bmw_5_95_c86, kovesi.linear_bmw_5_95_c89, kovesi.linear_bmy_10_95_c71, kovesi.linear_bmy_10_95_c78, kovesi.linear_gow_60_85_c27, kovesi.linear_gow_65_90_c35, kovesi.linear_green_5_95_c69, kovesi.linear_grey_0_100_c0, kovesi.linear_grey_10_95_c0, kovesi.linear_kry_5_95_c72, kovesi.linear_kry_5_98_c75, kovesi.linear_kryw_5_100_c64, kovesi.linear_kryw_5_100_c67, kovesi.linear_ternary_blue_0_44_c57, kovesi.linear_ternary_green_0_46_c42, kovesi.linear_ternary_red_0_50_c52, kovesi.rainbow_bgyr_35_85_c72, kovesi.rainbow_bgyr_35_85_c73, kovesi.rainbow_bgyrm_35_85_c69, kovesi.rainbow_bgyrm_35_85_c71) }
Viridis family of colormaps as found in Matplotlib. Designed to be perceptually uniform, but generally too dark to be useful.
magma(n) inferno(n) plasma(n) viridis(n)
magma(n) inferno(n) plasma(n) viridis(n)
n |
Number of colors to return |
A vector of colors
Palettes by Matteo Niccoli. R code by Kevin Wright.
pal.bands(magma, inferno, plasma, viridis)
pal.bands(magma, inferno, plasma, viridis)
These colormaps are intended by be more perceptually balanced than traditional rainbow-like palettes.
cubicyf(n) isol(n) cubicl(n) linearl(n) linearlhot(n)
cubicyf(n) isol(n) cubicl(n) linearl(n) linearlhot(n)
n |
Number of colors to return |
isol()
: Lab-based isoluminant rainbow with constant luminance L*=60.
Best choice for displaying interval data with external lighting.
best for displaying interval data with external lighting.
This is so as to allow the lighting to provide the shading to highlight
the details of interest. If lighting is combined with a colormap that
has its own luminance function associated - even as simple as a
linear increase this will confuse the viewer.
linearl()
: Lab-based linear lightness rainbow.
A linear lightness modification of Matlab's 'hot' palette.
For interval data displayed without external lighting.
100
linlhot()
: Linear lightness modification of Matlab's hot color palette.
For interval data displayed without external lighting
100
cubicyf()
: Lab-based rainbow scheme with cubic-law luminance(default)
For interval data displayed without external lighting
100
cubicl()
: Lab-based rainbow scheme with cubic-law luminance
For interval data displayed without external lighting
Similar to cubicyf(), but has red at high end
(a modest deviation from 100
A vector of colors
Palettes by Matteo Niccoli. R code by Kevin Wright.
Matteo Niccoli (2010). Perceptually improved colormaps. http://www.mathworks.com/matlabcentral/fileexchange/28982-perceptually-improved-colormaps Color definitions from here: http://www.mathworks.com/matlabcentral/fileexchange/28982-perceptually-improved-colormaps/content/pmkmp/pmkmp.m https://mycarta.wordpress.com/2012/05/29/the-rainbow-is-dead-long-live-the-rainbow-series-outline/
pal.bands(cubicyf,cubicl,isol,linearl,linearlhot) pal.test(cubicyf) # purple blue green pal.test(cubicl) # purple blue green orange # pal.test(isol) # magenta blue green red. Poor in green area. # pal.test(linearl) # black blue green tan. Poor in black area. # pal.test(linearlhot) # black red yellow
pal.bands(cubicyf,cubicl,isol,linearl,linearlhot) pal.test(cubicyf) # purple blue green pal.test(cubicl) # purple blue green orange # pal.test(isol) # magenta blue green red. Poor in green area. # pal.test(linearl) # black blue green tan. Poor in black area. # pal.test(linearlhot) # black red yellow
These palettes have been designed to be a collection of perceptually uniform colormaps designed for oceanographic data display.
ocean.algae(n) ocean.deep(n) ocean.dense(n) ocean.gray(n) ocean.haline(n) ocean.ice(n) ocean.matter(n) ocean.oxy(n) ocean.phase(n) ocean.solar(n) ocean.thermal(n) ocean.turbid(n) ocean.balance(n) ocean.curl(n) ocean.delta(n) ocean.amp(n) ocean.speed(n) ocean.tempo(n)
ocean.algae(n) ocean.deep(n) ocean.dense(n) ocean.gray(n) ocean.haline(n) ocean.ice(n) ocean.matter(n) ocean.oxy(n) ocean.phase(n) ocean.solar(n) ocean.thermal(n) ocean.turbid(n) ocean.balance(n) ocean.curl(n) ocean.delta(n) ocean.amp(n) ocean.speed(n) ocean.tempo(n)
n |
Number of colors |
The 'oxy' palette does not include gray as shown in Thyng (2016).
The 'balance', 'delta', and 'curl' palettes were originally given as 2*256 colors (256 each for the left and right half of the palette) and have been downsampled to 256 colors.
The palettes from matplotlib have been converted from RGB codes to hexadecimal strings for use in this package.
None
Palette colors by Kristen Thyng. R code by Kevin Wright
Thyng, K.M., C.A. Greene, R.D. Hetland, H.M. Zimmerle, and S.F. DiMarco (2016). True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography, 29(3):9-13, http://dx.doi.org/10.5670/oceanog.2016.66.
pal.bands(ocean.thermal, ocean.haline, ocean.solar, ocean.ice, ocean.gray, ocean.oxy, ocean.deep, ocean.dense, ocean.algae, ocean.matter, ocean.turbid, ocean.speed, ocean.amp, ocean.tempo, ocean.phase, ocean.balance, ocean.delta, ocean.curl, main="Ocean palettes") ## Not run: pal.test(ocean.thermal) pal.test(ocean.haline) # better than parula! pal.test(ocean.solar) pal.test(ocean.ice) pal.test(ocean.gray) pal.test(ocean.oxy) pal.test(ocean.deep) pal.test(ocean.dense) pal.test(ocean.algae) pal.test(ocean.matter) pal.test(ocean.turbid) pal.test(ocean.speed) pal.test(ocean.amp) pal.test(ocean.tempo) pal.test(ocean.phase) pal.test(ocean.balance) pal.test(ocean.delta) pal.test(ocean.curl) ## End(Not run)
pal.bands(ocean.thermal, ocean.haline, ocean.solar, ocean.ice, ocean.gray, ocean.oxy, ocean.deep, ocean.dense, ocean.algae, ocean.matter, ocean.turbid, ocean.speed, ocean.amp, ocean.tempo, ocean.phase, ocean.balance, ocean.delta, ocean.curl, main="Ocean palettes") ## Not run: pal.test(ocean.thermal) pal.test(ocean.haline) # better than parula! pal.test(ocean.solar) pal.test(ocean.ice) pal.test(ocean.gray) pal.test(ocean.oxy) pal.test(ocean.deep) pal.test(ocean.dense) pal.test(ocean.algae) pal.test(ocean.matter) pal.test(ocean.turbid) pal.test(ocean.speed) pal.test(ocean.amp) pal.test(ocean.tempo) pal.test(ocean.phase) pal.test(ocean.balance) pal.test(ocean.delta) pal.test(ocean.curl) ## End(Not run)
Show palettes as colored bands.
pal.bands( ..., n = 100, labels = NULL, main = NULL, gap = 0.1, sort = "none", show.names = TRUE )
pal.bands( ..., n = 100, labels = NULL, main = NULL, gap = 0.1, sort = "none", show.names = TRUE )
... |
Palettes/colormaps, each of which is either (1) a vectors of colors or (2) a function returning a vector of colors. |
n |
The number of colors to display for palette functions. |
labels |
Labels for palettes |
main |
Title at top of page. |
gap |
Vertical gap between bars, default is 0.1 |
sort |
If sort="none", palettes are not sorted. If sort="hue", palettes are sorted by hue. If sort="luminance", palettes are sorted by luminance. |
show.names |
If TRUE, show color names |
What to look for:
1. A good discrete palette has distinct colors.
2. A good continuous colormap does not show boundaries between colors.
For example, the rainbow()
palette is poor, showing bright lines at
yellow, cyan, pink.
pal.bands(c('red','white','blue'), rainbow) op=par(mar=c(0,5,3,1)) pal.bands(cubehelix, gnuplot, jet, tol.rainbow, inferno, magma, plasma, viridis, parula, n=200, gap=.05) par(op) # Examples of sorting labs=c('alphabet','alphabet2', 'glasbey','kelly','polychrome', 'watlington') op=par(mar=c(0,5,3,1)) pal.bands(alphabet(), alphabet2(), glasbey(), kelly(), polychrome(), watlington(), sort="hue", labels=labs, main="sorted by hue") par(op) pal.bands(alphabet(), alphabet2(), glasbey(), kelly(), polychrome(), watlington(), sort="luminance", labels=labs, main="sorted by luminance")
pal.bands(c('red','white','blue'), rainbow) op=par(mar=c(0,5,3,1)) pal.bands(cubehelix, gnuplot, jet, tol.rainbow, inferno, magma, plasma, viridis, parula, n=200, gap=.05) par(op) # Examples of sorting labs=c('alphabet','alphabet2', 'glasbey','kelly','polychrome', 'watlington') op=par(mar=c(0,5,3,1)) pal.bands(alphabet(), alphabet2(), glasbey(), kelly(), polychrome(), watlington(), sort="hue", labels=labs, main="sorted by hue") par(op) pal.bands(alphabet(), alphabet2(), glasbey(), kelly(), polychrome(), watlington(), sort="luminance", labels=labs, main="sorted by luminance")
The amount of red, green, blue, and gray in colors are shown.
pal.channels(pal, n = 150, main = "")
pal.channels(pal, n = 150, main = "")
pal |
A palette function or a vector of colors. |
n |
The number of colors to display for palette functions. |
main |
Main title. |
What to look for:
1. Sequential data should usually be shown with a colormap that is smoothly increasing in lightness, as shown by the gray line.
None
Kevin Wright
None
pal.channels(parula) pal.channels(coolwarm) # pal.channels(glasbey) # Nonsensical.
pal.channels(parula) pal.channels(coolwarm) # pal.channels(glasbey) # Nonsensical.
The palette colors are converted to LUV coordinates before clustering. (RGB coordinates are available, but not recommended.)
pal.cluster(pal, n = 50, type = "LUV", main = "")
pal.cluster(pal, n = 50, type = "LUV", main = "")
pal |
A palette function or a vector of colors. |
n |
The number of colors to display for palette functions. |
type |
Either "LUV" (default) or "RGB". |
main |
Title to display at the top of the test image |
What to look for:
Colors that are visually similar tend to be clustered together.
None
Kevin Wright
None
pal.cluster(alphabet(), main="alphabet") pal.cluster(glasbey, main="glasbey") # two royal blues are very similar pal.cluster(kelly, main="kelly") # two black-ish colors are very similar # pal.cluster(watlington, main="watlington") # pal.cluster(coolwarm(15), main="coolwarm") # curiously, grey clusters with blue
pal.cluster(alphabet(), main="alphabet") pal.cluster(glasbey, main="glasbey") # two royal blues are very similar pal.cluster(kelly, main="kelly") # two black-ish colors are very similar # pal.cluster(watlington, main="watlington") # pal.cluster(coolwarm(15), main="coolwarm") # curiously, grey clusters with blue
Compress a colormap function to fewer colors
pal.compress(pal, n = 5, thresh = 2.5)
pal.compress(pal, n = 5, thresh = 2.5)
pal |
A colormap function or a vector of colors. |
n |
Initial number of colors to use for the basis. |
thresh |
Maximum allowable Lab distance from original palette |
Colormap functions are often defined with many more colors than needed. This function compresses a colormap function down to a sample of colors that can be passed into 'colorRampPalette' and re-create the original palette with a just-noticeable-difference.
Colormaps that are defined as a smoothly varying ramp between a set of colors often compress quite well. Colormaps that are defined by functions may not compress well.
A vector of equally-spaced colors that form the 'basis' of a colormap.
Kevin Wright
None.
# The 'cm.colors' palette in R compresses to only 3 colors cm2 <- pal.compress(cm.colors, n=3) pal.bands(cm.colors(255), colorRampPalette(cm2)(255), cm2, labels=c('original','compressed','basis'), main="cm.colors") # The 'heat.colors' palette needs 84 colors heat2 <- pal.compress(heat.colors, n=3) pal.bands(heat.colors(255), colorRampPalette(heat2)(255), heat2, labels=c('original','compressed','basis'), main="heat.colors") # The 'topo.colors' palette needs 249 colors because of the discontinuity # topo2 <- pal.compress(topo.colors, n=3) # pal.bands(topo.colors(255), colorRampPalette(topo2)(255), topo2, # labels=c('original','compressed','basis'), main="topo.colors") # smooth palettes usually easy to compress p1 <- coolwarm(255) cool2 <- pal.compress(coolwarm) p2 <- colorRampPalette(cool2)(255) pal.bands(p1, p2, cool2, labels=c('original','compressed', 'basis'), main="coolwarm") pal.maxdist(p1,p2) # 2.33
# The 'cm.colors' palette in R compresses to only 3 colors cm2 <- pal.compress(cm.colors, n=3) pal.bands(cm.colors(255), colorRampPalette(cm2)(255), cm2, labels=c('original','compressed','basis'), main="cm.colors") # The 'heat.colors' palette needs 84 colors heat2 <- pal.compress(heat.colors, n=3) pal.bands(heat.colors(255), colorRampPalette(heat2)(255), heat2, labels=c('original','compressed','basis'), main="heat.colors") # The 'topo.colors' palette needs 249 colors because of the discontinuity # topo2 <- pal.compress(topo.colors, n=3) # pal.bands(topo.colors(255), colorRampPalette(topo2)(255), topo2, # labels=c('original','compressed','basis'), main="topo.colors") # smooth palettes usually easy to compress p1 <- coolwarm(255) cool2 <- pal.compress(coolwarm) p2 <- colorRampPalette(cool2)(255) pal.bands(p1, p2, cool2, labels=c('original','compressed', 'basis'), main="coolwarm") pal.maxdist(p1,p2) # 2.33
In a contrast sensitivity figure as drawn by this function, the spatial frequency increases from left to right and the contrast decreases from bottom to top. The bars in the figure appear taller in the middle of the image than at the edges, creating an upside-down "U" shape, which is the "contrast sensitivity function". Your perception of this curve depends on the viewing distance.
pal.csf(pal, n = 150, main = "")
pal.csf(pal, n = 150, main = "")
pal |
A continuous colormap function |
n |
The number of colors to display for palette functions. |
main |
Main title. |
What to look for:
1. Are the vertical bands visible across the full vertical axis?
2. Do the vertical bands blur together?
None
Kevin Wright
Izumi Ohzawa. Make Your Own Campbell-Robson Contrast Sensitivity Chart. http://ohzawa-lab.bpe.es.osaka-u.ac.jp/ohzawa-lab/izumi/CSF/A_JG_RobsonCSFchart.html
Campbell, F. W. and Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197: 551-566.
pal.csf(brewer.greys) # Classic example from psychology pal.csf(parula)
pal.csf(brewer.greys) # Classic example from psychology pal.csf(parula)
The palette is converted to RGB or LUV coordinates and plotted in a three-dimensional scatterplot. The LUV space is probably better, but it is easier to tweak colors by hand in RGB space.
pal.cube(pal, n = 100, label = FALSE, type = "RGB")
pal.cube(pal, n = 100, label = FALSE, type = "RGB")
pal |
A palette/colormap function or a vector of colors. |
n |
The number of colors to display for palette functions. |
label |
If TRUE, show color name/value on plot |
type |
Either "RGB" (default) or "LUV". |
What to look for:
A good palette has colors that are spread somewhat uniformly in 3D.
Note: The rgl package is NOT included in "Depends" for the pals package because it can cause problems for people. You might have to manually install rgl with install.packages.
None
None
## Not run: pal.cube(cubehelix) pal.cube(glasbey, n=32) # RGB, blues are too close to each other pal.cube(glasbey, n=32, type="LUV") pal.cube(cols25(25), type="LUV", label=TRUE) # To open a second cube rgl.open() # Open a new RGL device rgl.bg(color = "white") # Setup the background color pal.cube(colors()[c(1:152, 254:260, 362:657)]) # All R non-grey colors ## End(Not run)
## Not run: pal.cube(cubehelix) pal.cube(glasbey, n=32) # RGB, blues are too close to each other pal.cube(glasbey, n=32, type="LUV") pal.cube(cols25(25), type="LUV", label=TRUE) # To open a second cube rgl.open() # Open a new RGL device rgl.bg(color = "white") # Setup the background color pal.cube(colors()[c(1:152, 254:260, 362:657)]) # All R non-grey colors ## End(Not run)
Measure the pointwise distance between two palettes
pal.dist(pal1, pal2, n = 255)
pal.dist(pal1, pal2, n = 255)
pal1 |
A color palette (function or vector) |
pal2 |
A color palette (function or vector) |
n |
Number of colors to use, default 255 |
The distance between two palettes (of equal length) is calculated pointwise using the Lab color space. A 'just noticeable difference' between colors is roughly 2.3.
A vector of n distances.
Kevin Wright
https://en.wikipedia.org/wiki/Color_difference
pa0 <- c("#ff0000","#00ff00","#0000ff") pa1 <- c("#fa0000","#00fa00","#0000fa") # 2.4 pa2 <- c("#f40000","#00f400","#0000f4") # 5.2 pal.dist(pa0,pa1) # 1.87, 2.36, 2.11 pal.dist(pa0,pa2) # 4.12 5.20 4.68 pal.bands(pa1,pa0,pa2, labels=c("1.87 2.36 2.11","0","4.12 5.20 4.68")) title("Lab distances from middle palette")
pa0 <- c("#ff0000","#00ff00","#0000ff") pa1 <- c("#fa0000","#00fa00","#0000fa") # 2.4 pa2 <- c("#f40000","#00f400","#0000f4") # 5.2 pal.dist(pa0,pa1) # 1.87, 2.36, 2.11 pal.dist(pa0,pa2) # 4.12 5.20 4.68 pal.bands(pa1,pa0,pa2, labels=c("1.87 2.36 2.11","0","4.12 5.20 4.68")) title("Lab distances from middle palette")
Show a palette/colormap with a random heatmap
pal.heatmap(pal, n = 25, miss = 0.05, main = "")
pal.heatmap(pal, n = 25, miss = 0.05, main = "")
pal |
A palette function or a vector of colors. |
n |
The number of squares vertically in the heatmap. |
miss |
Fraction of squares with missing values, default .05. |
main |
Main title |
None.
Kevin Wright
None
pal.heatmap(brewer.paired, n=12) pal.heatmap(coolwarm, n=12) pal.heatmap(tol, n=12) pal.heatmap(glasbey, n=32) pal.heatmap(kelly, n=22, main="kelly", miss=.25)
pal.heatmap(brewer.paired, n=12) pal.heatmap(coolwarm, n=12) pal.heatmap(tol, n=12) pal.heatmap(glasbey, n=32) pal.heatmap(kelly, n=22, main="kelly", miss=.25)
Draw a heatmap for each palette. Each palette heatmap consists of a block of randomly-chosen colors, plus a block for each color with random substitutions of the other colors. A missing value NA is added to each palette of colors.
pal.heatmap2(..., n = 100, nc = 6, nr = 20, labels = NULL)
pal.heatmap2(..., n = 100, nc = 6, nr = 20, labels = NULL)
... |
Palettes/colormaps, each of which is either (1) a vectors of colors or (2) a function returning a vector of colors. |
n |
The number of colors to display for palette functions. |
nc |
The number of columns in each color block. |
nr |
The number of rows in each color block. |
labels |
Vector of labels for palettes |
None
Kevin Wright
None
pal.heatmap2(watlington(16), tol.groundcover(14), brewer.rdylbu(11), nc=6, nr=20, labels=c("watlington","tol.groundcover","brewer.rdylbu"))
pal.heatmap2(watlington(16), tol.groundcover(14), brewer.rdylbu(11), nc=6, nr=20, labels=c("watlington","tol.groundcover","brewer.rdylbu"))
What to look for:
pal.map(pal = brewer.paired, n = 12, main = "")
pal.map(pal = brewer.paired, n = 12, main = "")
pal |
A palette function or a vector of colors. |
n |
Number of colors to return. |
main |
Main title |
1. Are regions distinct?
2. Are outliers within each region distinct?
Display a palette on a choropleth map similar to ColorBrewer.
Broad bands of color are easy to distinguish. Does the palette allow visibility of outlier counties in the larger regions? Does the palette allow identification of colors when the pattern is more complex (as in the lower left corner of the map)?
Notes. The map shown by the ColorBrewer website is an SVG here https://github.com/axismaps/colorbrewer/tree/master/map/map.svg which contains the class identifier for each polygon, for 3 to 12 classes. Unfortunately, the polygons have no other identification (e.g. FIPS, county name). We used the identify.map function in R to manually define the classes similar to the 12-class map of ColorBrewer. This proved to be too tedious to do more than once, so our maps of 1-11 classes were created by combining classes from the 12-class map. The ColorBrewer website sometimes used this strategy to combine classes, but not always. The 'outlier' counties and 'random region' in this version are very similar to the 12-region map of ColorBrewer, but there are a few differences, mostly intentional. Also, the map projection used here is different from ColorBrewer.
None
Kevin Wright
http://www.personal.psu.edu/cab38/Pub_scans/Brewer_pubs.html Map based on www.ColorBrewer.org, by Cynthia A. Brewer, Penn State.
pal.map(brewer.paired, main="brewer.paired") pal.map(parula) ## Not run: for(i in 3:12){ pal.map(n=i, main=i) } ## End(Not run)
pal.map(brewer.paired, main="brewer.paired") pal.map(parula) ## Not run: for(i in 3:12){ pal.map(n=i, main=i) } ## End(Not run)
Measure the maximum distance between two palettes
pal.maxdist(pal1, pal2, n = 255)
pal.maxdist(pal1, pal2, n = 255)
pal1 |
A color palette (function or vector) |
pal2 |
A color palette (function or vector) |
n |
Number of colors to use, default 255 |
The distance between two palettes (of equal length) is calculated pointwise using the Lab color space. A 'just noticeable difference' between colors is roughly 2.3.
Numeric value of the maximum distance.
Kevin Wright
https://en.wikipedia.org/wiki/Color_difference
pa0 <- c("#ff0000","#00ff00","#0000ff") pa1 <- c("#fa0000","#00fa00","#0000fa") # 2.4 pa2 <- c("#f40000","#00f400","#0000f4") # 5.2 pal.maxdist(pa0,pa1) # 2.36 pal.maxdist(pa0,pa2) # 5.20 pal.bands(pa1,pa0,pa2, labels=c("2.36","0","5.20")) title("Maximum Lab distance from middle palette") # distance between colormap functions pal.maxdist(coolwarm,warmcool)
pa0 <- c("#ff0000","#00ff00","#0000ff") pa1 <- c("#fa0000","#00fa00","#0000fa") # 2.4 pa2 <- c("#f40000","#00f400","#0000f4") # 5.2 pal.maxdist(pa0,pa1) # 2.36 pal.maxdist(pa0,pa2) # 5.20 pal.bands(pa1,pa0,pa2, labels=c("2.36","0","5.20")) title("Maximum Lab distance from middle palette") # distance between colormap functions pal.maxdist(coolwarm,warmcool)
A single palette/colormap is shown (1) without any modifications (2) in black-and-white as if photocopied (3) as seen by deutan color-blind (4) as seen by protan color-blind (5) as seen by tritan color-blind
pal.safe(pal, n = 100, main = NULL)
pal.safe(pal, n = 100, main = NULL)
pal |
A palette function or a vector of colors. |
n |
The number of colors to display for palette functions. |
main |
Title to display at the top of the test image |
Rates of colorblindness in women are low, but in men the rates are around 3 to 7 percent, depending on the race.
What to look for:
1. Are colors still unique when viewed in less-than full color?
2. Is a sequential colormap still sequential?
None.
Kevin Wright
Vischeck. http://www.vischeck.com/vischeck/
None
pal.safe(glasbey) pal.safe(rainbow, main="rainbow") # Really, really bad pal.safe(cubicyf(100), main="cubicyf") pal.safe(parula, main="parula")
pal.safe(glasbey) pal.safe(rainbow, main="rainbow") # Really, really bad pal.safe(cubicyf(100), main="cubicyf") pal.safe(parula, main="parula")
What to look for:
pal.scatter(pal, n = 50, main = "")
pal.scatter(pal, n = 50, main = "")
pal |
A palette function or a vector of colors. |
n |
The number of colors to display for palette functions. |
main |
Main title |
1. Can the colors of each point be uniquely identified?
None.
Kevin Wright
None.
pal.scatter(glasbey, n=31, main="glasbey") # FIXME add legend pal.scatter(parula, n=10) # not a good choice
pal.scatter(glasbey, n=31, main="glasbey") # FIXME add legend pal.scatter(parula, n=10) # not a good choice
The test image shows a sine wave superimposed on a ramp of the palette. The amplitude of the sine wave is dampened/modulated from full at the top of the image to 0 at the bottom.
pal.sineramp( pal, n = 150, nx = 512, ny = 256, amp = 12.5, wavelen = 8, pow = 2, main = "" )
pal.sineramp( pal, n = 150, nx = 512, ny = 256, amp = 12.5, wavelen = 8, pow = 2, main = "" )
pal |
A palette function or a vector of colors. |
n |
The number of colors to display for palette functions. |
nx |
Number of 'pixels' horizontally (approximate). |
ny |
Number of 'pixels' vertically |
amp |
Amplitude of sine wave, default 12.5 |
wavelen |
Wavelength of sine wave, in pixels, default 8. |
pow |
Power for dampening the sine wave. Default 2. For no dampening, use 0. For linear dampening, use 1. |
main |
Main title |
The ramp function that the sine wave is superimposed upon is adjusted slightly for each row so that each row of the image spans the full data range of 0 to 255. The wavelength is chosen to create a stimulus that is aligned with the capabilities of human vision. For the default amplitude of 12.5, the trough to peak distance is 25, which is about 10 percent of the 256 levels of the ramp. Some color palettes (like 'jet') have perceptual flat areas that can hide fluctuations/features of this magnitude.
What to look for:
1. Is the sine wave equally visible horizontally across the entire image?
2. At the bottom, is the ramp smooth, or are there features like vertical bands?
None
Concept by Peter Kovesi. R code by Kevin Wright.
Peter Kovesi (2015). Good Colour Maps: How to Design Them. http://arxiv.org/abs/1509.03700.
Peter Kovesi. A set of perceptually uniform color map files. http://peterkovesi.com/projects/colourmaps/index.html
Peter Kovesi. CET Perceptually Uniform Colour Maps: The Test Image. http://peterkovesi.com/projects/colourmaps/colourmaptestimage.html
Original Julia version by Peter Kovesi from: https://github.com/peterkovesi/PerceptualColourMaps.jl/blob/master/src/utilities.jl
pal.sineramp(parula) pal.sineramp(jet) # Bad: Indistinct wave in green at top. Mach bands at bottom. pal.sineramp(brewer.greys(100))
pal.sineramp(parula) pal.sineramp(jet) # Bad: Indistinct wave in green at top. Mach bands at bottom. pal.sineramp(brewer.greys(100))
1. Z-curve
pal.test(pal, main = substitute(pal))
pal.test(pal, main = substitute(pal))
pal |
A palette function or a vector of colors. |
main |
Title to display at the top of the test image |
2. Contrast Sensitivity Function.
3. Frequency ramp. See: http://inversed.ru/Blog_2.htm Are the vertical bands visible across the full vertical axis?
4. 5. Two images of the 'volcano' elevation data in R using forward/reverse colors. Try to find the highest point on the volcano peak. Many palettes with dark colors at one end of the palette hide the peak (e.g. viridis). Also try to decide if the upperleft and upperright corners are the same color.
6. Luminosity in red, green, blue, and grey.
None.
Kevin Wright
# See links above.
pal.test(parula) pal.test(viridis) # dark colors are poor pal.test(coolwarm)
pal.test(parula) pal.test(viridis) # dark colors are poor pal.test(coolwarm)
Some palettes with dark colors at one end of the palette hide the shape of the volcano in the dark colors. Viridis is bad.
pal.volcano(pal, n = 100, main = "")
pal.volcano(pal, n = 100, main = "")
pal |
A palette function or a vector of colors. |
n |
The number of colors to display for palette functions. |
main |
Main title |
What to look for:
1. Can you locate the highest point on the volcano?
2. Are the upper-right and lower-right corners the same elevation?
3. Do any Mach bands circle the peak?
None.
pal.volcano(parula) pal.volcano(brewer.rdbu) # Mach banding is bad pal.volcano(warmcool, main="warmcool") # No Mach band pal.volcano(rev(viridis(100))) # Bad: peak position is hidden
pal.volcano(parula) pal.volcano(brewer.rdbu) # Mach banding is bad pal.volcano(warmcool, main="warmcool") # No Mach band pal.volcano(rev(viridis(100))) # Bad: peak position is hidden
Construct a Z-order curve, coloring cells with a colormap. The difference in color between squares side-by-side is 1/48 of the full range. The difference in color between one square atop another is 1/96 the full range.
pal.zcurve(pal, n = 64, main = "")
pal.zcurve(pal, n = 64, main = "")
pal |
A continuous color palette function |
n |
Number of squares for the z-curve |
main |
Main title |
What to look for:
1. A good color palette of 64 colors should be able to resolve 4 sub-squares within each of the 16 squares.
None
Kevin Wright.
Peter Karpov. 2016. In Search Of A Perfect Colormap. https://twitter.com/inversed_ru
Z-order curve. https://en.wikipedia.org/wiki/Z-order_curve
pal.zcurve(parula,n=4,main="parula") pal.zcurve(parula,n=16) pal.zcurve(parula,n=64) pal.zcurve(parula,n=256)
pal.zcurve(parula,n=4,main="parula") pal.zcurve(parula,n=16) pal.zcurve(parula,n=64) pal.zcurve(parula,n=256)
pals: A package for comprehensive palettes and palette evaluation tools
The terms 'palette' and 'colormap' are often interchanged. In this package (1) 'palette' is usually a discrete set of distinct colors and (2) 'colormap' is usually a smoothly varying set of many colors.
The best palette/colormap is determined by (1) the type of structure in the data, (2) the type of graphic to be constructed, and (3) the type of device used to show the graphic. The ColorBrewer website approaches this problem by suggesting different colors for qualitative, sequential, and diverging data, and also considers the display of the graphic on LCD and photocopies. One limitation with ColorBrewer is that it only uses maps, and does not consider other types of graphics. For example, yellow colors work well for polygons (on maps, barcharts, etc), but are poor for lines and scatter plots.
The 'pals' package provides a suite of tools to evaluate palettes/colormaps.
The design goals of the package are:
All palettes/colormaps are functions that return a vector of colors.
The palette function names use only lowercase letters.
The 'data' directory is not used.
Provide an extensive collection of palettes and colormaps.
Be memory efficient. Colormaps are compressed.
Provide multiple tools to evaluate palettes.
To learn more, see the vignettes:
browseVignettes(package="pals")
This function returns a data frame with the maximum number of colors for each palette currently available within the pals package.
pals.maxcolors()
pals.maxcolors()
A data frame with the maximum number of colors for each palette.
R code by Brian M Schilder.
dat <- pals.maxcolors()
dat <- pals.maxcolors()
Seismic data offsore of Nova Scotia in Canada. The data have some subtle structures that are interesting for comparing colormaps. Full details can be found at https://www.opendtect.org/osr/Main/PENOBSCOT3DSABLEISLAND License CC-BY.
data(penobscot)
data(penobscot)
A matrix 463 x 595.
https://github.com/agilescientific/notebooks https://github.com/agilescientific/notebooks/blob/master/Filtering_horizons.ipynb
# library(pals) data(penobscot) # Hall used cubehelix palette # http://wiki.seg.org/wiki/Smoothing_surfaces_and_attributes#External_links image(penobscot, col=rev(cubehelix(99))) # Niccoli suggested LinearL palette # http://wiki.seg.org/wiki/How_to_evaluate_and_compare_color_maps image(penobscot, col=linearl(99)) # Use this version to get a colorkey # library(lattice) # levelplot(penobscot, col.regions=rev(cubehelix(99)), # cuts=97, asp=0.7, scale=list(draw=FALSE))
# library(pals) data(penobscot) # Hall used cubehelix palette # http://wiki.seg.org/wiki/Smoothing_surfaces_and_attributes#External_links image(penobscot, col=rev(cubehelix(99))) # Niccoli suggested LinearL palette # http://wiki.seg.org/wiki/How_to_evaluate_and_compare_color_maps image(penobscot, col=linearl(99)) # Use this version to get a colorkey # library(lattice) # levelplot(penobscot, col.regions=rev(cubehelix(99)), # cuts=97, asp=0.7, scale=list(draw=FALSE))